Learning and Classification of Complex Dynamics
نویسندگان
چکیده
ÐStandard, exact techniques based on likelihood maximization are available for learning Auto-Regressive Process models of dynamical processes. The uncertainty of observations obtained from real sensors means that dynamics can be observed only approximately. Learning can still be achieved via aEM-KoÐExpectation-Maximization (EM) based on Kalman Filtering. This cannot handle more complex dynamics, however, involving multiple classes of motion. A problem arises also in the case of dynamical processes observed visually: background clutter arising for example, in camouflage, produces non-Gaussian observation noise. Even with a single dynamical class, non-Gaussian observations put the learning problem beyond the scope of EM-K. For those cases, we show here how aEM-CoÐbased on the CONDENSATION algorithm which propagates random aparticle-sets,o can solve the learning problem. Here, learning in clutter is studied experimentally using visual observations of a hand moving over a desktop. The resulting learned dynamical model is shown to have considerable predictive value: When used as a prior for estimation of motion, the burden of computation in visual observation is significantly reduced. Multiclass dynamics are studied via visually observed juggling; plausible dynamical models have been found to emerge from the learning process, and accurate classification of motion has resulted. In practice, EM-C learning is computationally burdensome and the paper concludes with some discussion of computational complexity. Index TermsÐComputer vision, learning dynamics, Auto-Regressive Process, Expectation Maximization.
منابع مشابه
Dynamics of self-directed learning in M.Sc. nursing students: A qualitative research
Introduction: Working in the complex and ever changinghealthcare settings forces the nurses and nursing students to beequipped with lifelong learning skills. One of the lifelong learningskills is self-directed learning. This study aimed to explore theM.Sc. nursing students’ self-directed learning activities.Methods: A qualitative design using conventional content analysisapproach was used in th...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملReinforcement learning based feedback control of tumor growth by limiting maximum chemo-drug dose using fuzzy logic
In this paper, a model-free reinforcement learning-based controller is designed to extract a treatment protocol because the design of a model-based controller is complex due to the highly nonlinear dynamics of cancer. The Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. In the Q-learning algorithm, each entry of the Q-table is updated using data...
متن کاملEmpowering Nurses: Explaining the Role of Organizational Learning and the Dynamics of the Learning Environment
Introduction: Researchers acknowledge that different educational and contextual factors can influence human resource development. Because of stress in hospital wards environment and lack of personnel’s support for student, personnel’s aggressive tempers, the supporting of nursing students is an important factor. Therefore, The present study aims to investigate the role of educational environmen...
متن کاملNonresponse prediction in an establishment survey using combination of statistical learning methods
Nonrespose is a source of error in the survey results and national statistical organizations are always looking for ways to control and reduce it. Predicting nonrespons sampling units in the survey before conducting the survey is one of the solutions that can help a lot in reducing and treating the survey nonresponse. Recent advances in technology and the facilitation of complex calculations...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Pattern Anal. Mach. Intell.
دوره 22 شماره
صفحات -
تاریخ انتشار 2000